ENDEREÇO E TELEFONE:
Telefone/Fax: (16) 3412-9752 / e-mail: sbmac@sbmac.org.br
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 |
São Carlos/SP - CEP: 13561-120
Abstract: We present a model for dengue fever. We interface a model of development for mosquitoes comprising eggs, larvae and adult female with a SEIR model for human hosts. This model is inspired from the models of Dumont 2008 [3, 11]. This model is then applied to a metapopulation model. In the first place we describe the concept of metapopulation models. Metapopulations models applied to dengue are rather scarce in literature [1, 9, 10]. The problem of modeling human movement is addressed and what has been done in preceding literature is summarized.
References
[1] B. Adams and D. D. Kapan, Man bites mosquito : understanding the contribution of human movement to vector-borne disease dynamics., PloS One, 4 (2009), p. e6763.
[2] M. Derouich, A. Boutayeb, and E. Twizell, A model of dengue fever, Biomed Eng Online, 2 (2003).
[3] Y. Dumont, F. Chiroleu, and C. Domerg, On a temporal model for the Chikungunya disease : modeling, theory and numerics, Math. Biosci., 213 (2008), pp. 80€“91.
[4] L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), pp. 131€“151.
[5] ________, A model for dengue disease with variable human population., J. Math. Biol., (1998), pp. 220€“240.
[6] ________, Influence of vertical and mechanical transmission on the dynamics of dengue disease., Math. Biosci., (2000), pp. 51€“64.
[7] L. Esteva and C. Vargas, Coexistence of different serotypes of dengue virus., J. Math. Biol., 46 (2003), pp. 31€“47.
[8] L. Esteva and H. M. Yang, Control of Dengue vector by the sterile insect technique considering logistic recruitment, TEMA Tend. Mat. Apl. Comput., 7 (2006), pp. 259€“268.
[9] E. Massad, S. Ma, M. Chen, C. J. Struchiner, N. Stollenwerk, and M. Aguiar, Scale-free network for a dengue epidemic, Appl. Math. Comput., 195 (2008), pp. 376€“381 .
10] L. d. C. Medeiros, C. Castilho, C. Braga, W. Viera, de Souza, L. Regis, and A. Monteiro, Modeling the dynamic transmission of dengue fever : Investigationg disease persistence, PLoS Negl Trop Dis, 5 (2011).
[11] D. Moulay, M. A. Aziz-Alaoui, and M. Cadivel, The chikungunya disease : modeling, vector and transmission global dynamics, Math. Biosci., 229 (2011), pp. 50€“63.
[12] P. Pongsumpun and I. Tang, Transmission of Dengue hemorrhagic fever in an age structured population., Math. Comput. Modelling, 37 (2003), pp. 949€“961 .
1 €œDirecteur de recherche€ do projeto do INRIA http://www.inria.fr/en/en/teams/masaie(Tools and models of nonlinear control theory for epidemiology and immunology). Matemático bem conhecido na comunidade de controle, e nos últimos anos tem se dedicado a epidemiologia. Ele está vindo ao Brasil, junto com Abderrahman Iggidr, seu colega da Université Paul Verlaine de Metz, no âmbito de projeto CAPES/CAFECUB coordenado pela Escola de Matemática Aplicada da FGV. Um dos principais aspectos da visita é conhecer as vários centros de matemática do Rio e conversar com potenciais interessados em bolsas sanduiche (doutorado) ou estágios pós-doutorais (para informações escrever para Jair Koiller jkoiller@fgv.br)