A Semi discretization Scheme

for a phase-field model of a binary alloy

Cristina Licia Dias Vaz

Faculdade de Matematica, ICEN-UFPA,
66100-000, Belém, PA, Brazil.
E-mail: cvazQufpa.br

Francisco Guillén
Dpto. E.D.A.N., University of Sevilla,
Aptdo. 1160, 41080 Sevilla, Spain.
E-mail: guillen@us.es

Abstract: The aim of this paper is to show
the existence of solutions to a nonlinear prob-
lem arising from the isothermal solidification
of a binary alloy in two dimensional domain.
For this, a mathematical analysis of a time dis-
cretization scheme is considered. We establish
a discrete marimum principle to obtain the a
priori estimates. The convergence of the solu-
tions of discrete scheme is proved and existence
and reqularity results for the original problem
are derived.

1 Introduction

Phase separation observed during the solid-
ification process of materials is an important
and fascinating topic for researches. It is a dif-
ficult topic, though, and one of the principal
obstacles in predicting solidification patterns
is the difficulty of accurately calculating the
processes occurring in the liquid and solid re-
gions for the complex shapes of the liquid-solid
interfaces that appear during the process. For
the treatment of the such interfaces, the phase-
field method has emerged as a powerful tool,
among the large class of the methods that rely
on treating a macroscopically sharp interface as
a diffuse region. In this type of modeling, an
extra variable, the so called phase-field ¢(z,t),
is introduced as an order parameter used to de-
scribe the phases of the material. The behavior
of this variable is governed by a suitable equa-
tion that is then coupled to other equations
obtained by the more usual balancing of mass,

momentum, energy or solute, according the pe-
culiar situation under investigation. Therefore,
it is important to understand the mathematical
problems resulting from this approach.

Following this line of research, the goal of
this paper is to analyze a nonlinear parabolic
system of highly nonlinear partial differential
equations arising by using this kind of modeling
in a isothermal solidification process of a binary
alloy. More precisely, we consider a phase-field
model motivated by the ones in [1, 2, 4, 11].
In the model to be analyzed, the state of the
alloy is characterized by the relative concen-
tration ¢ (the proportion of solute in the sol-
vent) and phase-field ¢. When ¢ = 0 the alloy
is considered to be liquid, ¢ = 1 the alloy is
solid. The region when 0 < ¢ < 1 corresponds
to the solid-liquid transition region, which is
sometimes called the mushy region.

Let Q C R? be an open bounded domain
with a C? boundary and Q = Q x (0,7) the
space-time cylinder with lateral surface S =
00 x (0,T). Then, we consider the following
nonlinear system (P):

Orp — 8¢ = (9 — 1)(1 = 2p) — |Vl c in Q,
Orc — div(Dq(¢)Ve) = div(Da(c, p)Ve) in Q,
=0, ¢=0 on S,

90(5670) = 900(‘73)7 C($,0) = CO(x) in Q,

Here, £ is a positive constant associated to ma-
terial properties; D;(-) and Ds(-) are diffusion
coefficients of the solute in the matrix of the
solvent, that is, the other material constituting
the binary alloy; ¢o(-) and c¢o(-) are the ini-
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tial conditions respectively for the phase-field
and solute concentration. For simplicity of
exposition, we assumed homogeneous Dirich-
let boundary conditions; with simple modifica-
tions of the arguments, similar analysis could
be done for other kinds of boundary conditions;
for instance, we could take homogeneous Neu-
mann boundary conditions for some of all of
the unknown; consider appropriate nonhomo-
geneous boundary conditions, and so on.

The previous phase-field equation was de-
rived by Beckermann, Diepers, Steinbach in [1],
but here it is presented in a form obtained there
before a final simplification was carried out.
Thus, in a certain sense the phase field equation
given in (P) can be considered more accurate
than the final form stated in [1]. The concen-
tration equation is obtained by rather general
forms of balances of mass and generalize the
cases of [1, 4, 11].

In this paper, an existence result for so-
lutions will be obtained for the case of two-
dimensional domain by using a time discretiza-
tion scheme to construct approximate solu-
tions. Regularity and uniqueness will be ob-
tained when D1 (¢) and Ds(c, ), and the other
data are smooth enough.

The outline of the paper is the following.
The next section is dedicated to fix the nota-
tions, to introduce the basic functional spaces
to be used, to collect some results about inter-
polation inequalities and embeddings, as well
as to explicitly describe our general assump-
tions. Also in this section, we introduce the
time-discretization scheme to be used and state
the main results of the paper. In Section 3 con-
tains the proof of the existence of the discrete
solution, that is, solutions of the corresponding
discretized scheme, as well as certain results on
their regularity. In Section 4 we establish a dis-
crete maximum principle for the semi discrete
problem related to the phase field equation.
This result is important to obtain the a priori
estimates of semi discrete scheme and it is only
proved for the case of two-dimensional.. Exis-
tence of a weak solution is proved in Section 5
by using a collection of estimates, uniform with
respect to the time-discretization step. In Sec-
tion 6 presents further regularity and unique-
ness of the solutions.

Finally, we remark that, as usual in this kind
of context, throughout the article we will de-

note by M, and sometimes M;, Mo, ...,
stants depending only on known quantities.

con-

2 Notation, assumptions and
auxiliary results

We denote the Banach space Wq2 1(Q) con-
sists of functions u(z,t) in L?(Q) whose gen-
eralized derivatives Oyu, 0?u, O are LA-
integrable; here 0; denotes all the partial deriv-
atives with respect to x1,...,x, of order s. Its
norm is given by

0.QH10xullq.q+|07ul

2
[ul| = [l eo+10wullg.0-

We refer to [5, 8], for instance, for more de-
tails of the previous spaces.

We will also need the following Gagliardo-
Nirenberg type interpolation inequalities stated
in the following lemmas (see Zheng [13, p. 3]):

Lemma 2.1 Let Q ¢ R, d = 1, 2 or 3, is
a bounded domain with a C?-boundary. Then,
there exist a positive constant M such that

IVulli o < Ml|Aull2g |lullo,g;

Yu € HE(Q)NL®(Q).

(2.1)

In lower dimensions, the following holds:

Lemma 2.2 Let Q ¢ R, d =1 or 2 is a
bounded domain with a C?*-boundary. Then,
there exist a positive constant M such that

lullfo < Mllulla.g [[Vull2,0, (2.2)
Yue HL(Q)NL2(Q).
IVulliq < M||[Vull2a [|Aullg,  (23)

Yu € HE(Q)NHYQ).

Throughout this paper we shall make the fol-
lowing assumptions:

(H): Q C IR is a bounded domain with C?-
boundary;

D1 (-) € C°(IR) such that
0 < po < Di(+) < p1, po,p1 € RT;

Dy(-,-) € C°(IR?) such that
|Da(-, )| < ap, ap € RF.

In this paper we shall frequently make use of
some auxiliary results, which we list below for
further reference.

Frequently we shall use the discrete Gronwall
Lemma:
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Lemma 2.3 Let 7, M, uy,, v, (for intergers
n > 0) be nonnegative numbers such that

n
Uy < M+7'kauk for n > 0.

k=0

Suppose that Tvp, < 1. Then

n
Z Uk ) for n>0.
1—7u

k=0

ungMexp<

At various places we shall use the following
relation

2 /Q a(a—b) dz = [|al|3.0— |[bI[3 o +[la— b3 o-

(2.4)

Our next lemma provides a compactness cri-
terion:

Lemma 2.4 Let X and Y be two (not neces-
sarity reflexive) Banach spaces, such that' Y C
X, the injection being compact.

Assume that G is a family of functions in
LY0,T;Y) N LP(0,T; X) for some T > 0 and
p > 1, such that

G is bounded in L*(0,T;Y) and LP(0,T; X);
(2.5)

T—a
sup gla+s) —g(s)|[5 ds — 0
sup [ llgta 4 5) — g(0)1% 20

as a— 0, a>0.

Then the family G is relatively compact in
LP(0,T;X).

2.1 Semi discretization

We consider a semi discretization of prob-
lem (P) with respect to the time variable as
follows: we subdivide [0,7] into N subinter-
vals [tm—1,tm], tm = 7m, 7 = T/N, and for
m=1,2,---, N we consider the following sys-
tem of elliptic problems (PD):

Spp™ — AP = ("1 = 1)(1 - 2™ )™
—|Ve™| ™t ae. in Q,
5tcm —diV(Dl( m)Vc )
div(Da(c™, ™)Ve™) a.e. in Q,

=0, ¢™=0 a.e. in 99,

m

where ¥ = ¢g(z), & = Co( ) dep™ = (™ —
™Y1, Gic™ = (™ — BY/r and ¢™ and
A, m=1,...,N, are expected to be approxi-
mations of ¢(x,t,,) and c(z, t,,), respectively.

We will prove the following existence result
for discrete scheme (PD):

Theorem 2.1 There exists an unique solution
(™, c™) in H?(Q) x H} () of the approzimate
problem (PD).

With this result we may introduce the func-
tions: for t € [ty—1,tm], and 1 < m < N,
we define @r(t) = @™+ (t — tm_1)0e™,
- (t) = ™ 4 (t—tpm_1)0;c™, and correspond-
ing step functions are given by ¢, (t) = ¢ and
cr(t) =c™.

The sequence of functions (¢-, ¢-) can be ex-
pected to converge as 7 — 0, in suitable func-
tion spaces. The limit function (p,c) is ex-
pected to be a solution to the problem (P):

Theorem 2.2 Assume that (H) holds. Sup-
pose (po,co) € HY(Q) N L2(Q) with 0 <
wo(x) <1 for a.e. x € Q. Then there exists
functions (p,c) satisfying (p,c) € W22’1(Q)
(L>®(0,T; L3(Q)) N L2(0,T; H (Q))) and ¢; €

X

L2(0,T; H1(Q)), such that (p(0),c(0))
(po0,co) and
(ct,v /D1 )WceVodr =

/ Ds(p,c)Ve Vuder,
for all v € H}(Q) a.e. in (0,T),

—&Ap = p(p—1)(1 —2¢p) —
=0 onS.

Volc in Q,

When ¢y, D1 and D- are smooth enough, we
may have further regularity properties:

Theorem 2.3 Assume that (H) holds. Sup-
pose co € H}(Q), D1(¢) and Ds(c, p,) are dif-
ferentiable, with VD, € L*®(IR) and VD, €
L>®(IR?). Then there exists an unique solution
(p,¢) € (Wa'(Q))? of the problem (P).

3 Proof of Theorema 2.1

For a fixed m, assuming that ¢™ ! and ¢™!
are already known and we consider the follow-

ing nonlinear system:

—TEEAP™ + @™ =1 (" (1 = 2™ )P —
T|Ve™ ™=t + om=t  in
—7div(D1(¢™)V™) 4+ " =

7div(Da(c™, ™)Ve™) + ™1 in Q,
m=0, =0 on 0N.

The proof the Theorem 2.1 will be omitted.
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4 Discrete maximum principle

Next, we establish a discrete maximum prin-
ciple for the semi discrete problem:

Sip™ = €A™ = (" = 1)(1 = 20"~
V™[ ¢™ b aein Q (4.7)
" =0 ae. on 0N

where ¢ = ¢g(x) such that 0 < gp(z) < 1 and
(5t80m — (@m _ (pmfl)/,]_'

Now, we multiplying the equation (4.7) by
27¢™, integrating over {2 and using Green’s for-
mula, we obtain

2 / (@™ — " V)™ dr + 272 / V™2 de =
Q Q

2 /Q (™ = 1)1 — 2™ (™) d—

27’/ V™™™ da.
Q

Moreover, we can write

2/(<pT—gom_1)goT dx+

Q
2/((pm_1—g0m_1)<p7f d:r—i—27§2/ V™™ ? dz =
Q Q
27 [ (¢ = 1)1 27 ) () da-
Q
27’/ V™™ ™ da.
Q

m—1

(T = dar >
0, maﬁ%c(s —1)(1—2s) is finite, and Holder’s and
se

Young’s inequalities, we get

Now, using that 2 /

2 / (o™ — o™V d + 20€2| [V B <
Q

M50 + TIIVeT | l2alle™ Hlsalle™lso-

Using the relation (2.4) and Young’s inequal-
ity, we obtain

—1 1
|l %Q — || H%,Q + [ — o™ %,Q"‘
TV 5 <

T _
TM1||<PT—”H%,Q+§HCm 1||12L,Q l™ 421,9-

Using the result interpolation (2.2) and
Young’s inequality, we have

™[50 = e I3 o+

m m—1)|2 7—52 mi|2
[T — @™ ||2,Q+7||V90— 2.0 <
T _
TM1\|¢T||§,Q+@HC’” Hlzalle™5.0-

Summing these relations for m = 1,2,...,r,
with 1 <r < N, we find

T
e 150+ Y lle™ — ™ B o+
m=1

T

Yo IVer|za <

m=1

r
1 _
By (M1 + el 11\3,9) o™ e
m=1

7'52
2

From discrete Gronwall Lemma 2.3

"

I8
1 _
MQH‘PQH%,Q exp (T Z @Hcm 1||i§2> .
m=1

Since ¢ = 0, we conclude that ||¢" |3 = 0.
Hence ¢™ = 0 for all m and a.e. in 2.

2
20 S

In the same way, ©° < 1 a.e in Q implies that
™ <1 for all m and a.e. in §2; it is sufficient
to multiply the equation (4.7) by (1—¢™)_ and
proceed similarity as before.

Then, we proved that

0<¢™(x) <1, Vm, ae. in{. (4.8)

5 Proof of Theorem 2.2

Lemma 5.1 For 7 sufficiently small the fol-
lowing estimates are satisfied:

(o, @)l (oo (0,731 ()2 < M,
(s @)l 220,112 (002 < M,
[1(er el .22 < M,
[(crs el 20,51 ()))2 < M,
[0:0r 2,0 < M.
Moreover, ||(¢7 — o7, Cr — CT)H(L2(Q))2 <7TM.

The proof the Theorem 2.1 will be omitted.
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5.1 Taking the limit

We deduce from Lemma 5.1 that (@r,¢;),
(¢r,c;) are bounded (uniformly with respect
to 7) in Wil'(Q) x L2(0,T; H*Q)) and
(L3(0,T; HY(Q)))?, respectively. — Moreover,
W22 ’1(Q) is compactly embedding into LP(Q)
with 1 < p < oo (see [9]). Hence, there ex-
ist (7,¢) € W3 (Q) x L2(0, T; H*(Q)), (¢,c) €
(L2(0,T; H}(2)))? and subsequences still de-
note (¢r,¢r), (Pr,¢r), such that as 7 — 0,

P =@ i WyN(Q),

or = ¢ in L*(0,T; H*()),

$r — ¢ in LP(Q),

¢ —¢ in L*0,T; HY(OQ

c; —c in L%0,T; H(Q

G ST in L™(0,T; L*(Q)),
L=(0,T; L*()).

)); (5.9)
)

* .
cr —c In

Since (¢r — @r,¢r — ¢;) converge to 0 in
(L?(Q))?%, we conclude that (o, c) = (@, ¢).

We infer from (5.9) that ¢ — ¢ a.e. in Q;
this and 0 < ¢, (x,t) < 1 imply

0<@(rt)<1 ae inQ. (5.10)

Observe that from (5.9) and using the as-
sumption (H), we obtain that

Di(¢r) = Dily) ac.inQ

Now, for each 7 and any fixed 2 < p < o0,
define the functions g, = |Di(p;) — D1(p)P.
By using again (H) and the previously proved
almost everywhere convergences, we obtain
lgr] < 2Pp) and g — 0 a.e. Then, by
the Lebesgue’s dominated convergence theo-
rem, we conclude that

Di(p;) — Di(p) strongly in LP(Q), (5.11)

for any 2 < p < o0.

Next, we need the estimate of fractional in
time of ¢ to apply the compactness result given
in Lemma 2.4.

We set Y = HO(Q) and X = L%(Q); the
embedding of H}(2) in L?*(Q) is compact by
Rellich’s theorem; we choose p = 2 and G is
the family of functions ¢;.

Now, using function (@r,¢;), and corre-
sponding step function (¢r,c¢;) we rewrite
(PD) in the form

0pr
ot

- §2ASDT = (‘PT - 1)(1 - 2907')907'_
|V<,0¢’CT,

i (=

vdw) —i—/ Di(p-(t))Ver(t)Vodr =

i

for all v € HL ().

We then know from Lemma 5.1 the ¢, is
bounded in L?(0,T; H}(£2)). There remains to
show (2.6). For this, we integrate (5.12) be-
tween ¢t and t +a, t € (0,T), a > 0:

(1)) Ver(t)vde,
(5.12)

/(ET(t + CL) — ET(t))U dr =
Q

_/tHa/QDl(cpT(s))VcT(s)Vvdmds

t+a
_/t /QD2(90T(8),CT(8))V()DT(S)V’U dx ds.

We choose v = ¢ (t+a) —¢;(t), and integrate
these relations between 0 and 7' — a. We find

T—a
/ Gt +a) — & ()l3g = I + I, (5.13)
0

where

_/OT_a /tt_a/gpl(@T(s))Jl dz ds dt,
_/OT_a/tH_a/QD2(¢7(5)7CT(3))JQ de ds dt,

with J; = Ver(s)(Ver(t + a) — Ver(t)) and
Jay = Vo (s)(Ver(t +a) — Ve (t)).

Using the assumptions (H), Fubini’s theo-
rem and Schwarz inequality, we get

T 1/2
rhr<mT”%w@(A HVG@N@mﬁ)

1/2

T—a
</‘ HVa@+a)Va@m&ﬁQ ,
0
T 1/2
rbrng”%V2</|Vw4@M@w)
0

T—a 1/2
(/' HVa@+a%—Va@N%ﬂ0
0

From Lemma 5.1, we obtain

L) < Ma'?, |L|<Mad/?2  (5.14)

Combining (5.14) and (5.13), we obtain
(2.6). Hence there exist subsequences still de-

note ¢,, such that as 7 — 0,

¢ —c in L*Q). (5.15)



Applying arguments that are similar to the
ones used to obtain the estimate (5.11), we can
show the following convergence:

Dy(pr,cr) — Da(p,c) strongly in LP(Q),

with 2 < p < co.

On the other hand, for any ¢ € L?*(Q), we
have that

/Q((3 2—203—p)—(3p°—2¢p°—p) ) dr dt =

/Q dr (or

where d. = 3(¢r + ) — 2(¢2 + ¢r 0+ ¢?) —
We observe that by using the fact that 0
or <1 and 0 < ¢ <1 we obtain ||dr||,Q

/dT (pr — p)pdadt <
Q

and from (5.9), we

@) dx dt,

M. Consequently,

|ld]]00,@ llo7r —
conclude that

‘PT(‘PT_

Moreover, from (5.9) and (5.15), we conclude

that
IVer| er = [Veple in L*(Q).

With the previous convergence results, with
standard arguments, it is easy to take the limit
in the approximate problem (PD) and prove
that ¢ and c is the required solution.

This completes the proof of Theorem 2.2. B

6 Proof of Theorem 2.3

To examine the regularity of (p,c), we as-
sume that Di(s) € CYIR) and Do(s,y) €
C'(IR?) such that

|0sD1| < p2, [0sD2| < a1, [0yDa| < ao,
(6.16)
where po2, 1,0 € R".
Now, we multiplying the second equation in
(PD) by —27Ac™, integrating over © and us-

ing Green’s formula, we obtain

2/(v
27/D1

— VY Ve da+-

) AC™? dr =

1)(1-2¢;) = p(e—1)(1-2¢) in L*(Q).

MV Ay, de—

2T/8D1

27’/ dpDa(c™, ™)V 2 Ac™ dx—

Q

27’/ OcDa (™, ")V "'V ™A™ dox—
Q

—27/ Do(c™, ™) A" A dz. (6.17)
Q

Using the assumptions (H) and (6.16), the
estimate (2.4), Holder’s and Young’s inequali-
ties, we obtain

IVe™ 3o = IVe™ I3 o+

_ TPo
[Vem —Ver 1”3,9+ A" |5 <

TM1||VSOm||12L,Q||VCmH4,Q+
TMa| V™[5 o + TM3l[A™|[3 -

From the interpolation result (2.1) and (4.8),
we obtain

IVe™lia < M|Ae™ 2.0, (6.18)

and consequently, we have
chmH%,Q - ||ch_1”§,ﬂ+

_ TPo
IVe™ — Ve 5o + ?HACmH%,Q <

TMyl|Ap™|2,0] V™ [[2,0l[Ac™ 2,0+
TM5]| Ap™|[3 -

Applying Young’s inequalitly, we get
IVe™[[3q — Ve H[5 o+

_ TPo
|[Vem — Ve 1”3,9+ 1A 30 <

Tf\fellAsomllg,nlIchHz,gJr
TMs||Ap™|[3 q.

Summing these relations for m = 1,2,...,r,
with 1 <r < N, we find

'
IV |3 g+ Y V™ = Ve 3 o+

m=1

T
Ty A B g < My ([|[Veol 3o+

m=1
N

N
7Y A" BallVeBa + 7 Y 1AM 50

m=1 m=1
From Lemma 5.1 and discrete Gronwall

Lemma 2.3, we obtain

m||2
Jhax, 2.0+
m=1

Z [Vem = Ve g <
m=1
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