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Cristina Lúcia Dias Vaz
Faculdade de Matemática, ICEN-UFPA,
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Abstract: The aim of this paper is to show
the existence of solutions to a nonlinear prob-
lem arising from the isothermal solidification
of a binary alloy in two dimensional domain.
For this, a mathematical analysis of a time dis-
cretization scheme is considered. We establish
a discrete maximum principle to obtain the a
priori estimates. The convergence of the solu-
tions of discrete scheme is proved and existence
and regularity results for the original problem
are derived.

1 Introduction

Phase separation observed during the solid-
ification process of materials is an important
and fascinating topic for researches. It is a dif-
ficult topic, though, and one of the principal
obstacles in predicting solidification patterns
is the difficulty of accurately calculating the
processes occurring in the liquid and solid re-
gions for the complex shapes of the liquid-solid
interfaces that appear during the process. For
the treatment of the such interfaces, the phase-
field method has emerged as a powerful tool,
among the large class of the methods that rely
on treating a macroscopically sharp interface as
a diffuse region. In this type of modeling, an
extra variable, the so called phase-field ϕ(x, t),
is introduced as an order parameter used to de-
scribe the phases of the material. The behavior
of this variable is governed by a suitable equa-
tion that is then coupled to other equations
obtained by the more usual balancing of mass,

momentum, energy or solute, according the pe-
culiar situation under investigation. Therefore,
it is important to understand the mathematical
problems resulting from this approach.

Following this line of research, the goal of
this paper is to analyze a nonlinear parabolic
system of highly nonlinear partial differential
equations arising by using this kind of modeling
in a isothermal solidification process of a binary
alloy. More precisely, we consider a phase-field
model motivated by the ones in [1, 2, 4, 11].
In the model to be analyzed, the state of the
alloy is characterized by the relative concen-
tration c (the proportion of solute in the sol-
vent) and phase-field ϕ. When ϕ = 0 the alloy
is considered to be liquid, ϕ = 1 the alloy is
solid. The region when 0 < ϕ < 1 corresponds
to the solid-liquid transition region, which is
sometimes called the mushy region.

Let Ω ⊂ R2 be an open bounded domain
with a C2 boundary and Q = Ω × (0, T ) the
space-time cylinder with lateral surface S =
∂Ω × (0, T ). Then, we consider the following
nonlinear system (P):

∂tϕ− ξ2∆ϕ = ϕ(ϕ− 1)(1− 2ϕ)− |∇ϕ| c in Q,

∂tc− div(D1(ϕ)∇c) = div(D2(c, ϕ)∇ϕ) in Q,
ϕ = 0, c = 0 on S,

ϕ(x, 0) = ϕ0(x), c(x, 0) = c0(x) in Ω,

Here, ξ is a positive constant associated to ma-
terial properties; D1(·) and D2(·) are diffusion
coefficients of the solute in the matrix of the
solvent, that is, the other material constituting
the binary alloy; ϕ0(·) and c0(·) are the ini-
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tial conditions respectively for the phase-field
and solute concentration. For simplicity of
exposition, we assumed homogeneous Dirich-
let boundary conditions; with simple modifica-
tions of the arguments, similar analysis could
be done for other kinds of boundary conditions;
for instance, we could take homogeneous Neu-
mann boundary conditions for some of all of
the unknown; consider appropriate nonhomo-
geneous boundary conditions, and so on.

The previous phase-field equation was de-
rived by Beckermann, Diepers, Steinbach in [1],
but here it is presented in a form obtained there
before a final simplification was carried out.
Thus, in a certain sense the phase field equation
given in (P) can be considered more accurate
than the final form stated in [1]. The concen-
tration equation is obtained by rather general
forms of balances of mass and generalize the
cases of [1, 4, 11].

In this paper, an existence result for so-
lutions will be obtained for the case of two-
dimensional domain by using a time discretiza-
tion scheme to construct approximate solu-
tions. Regularity and uniqueness will be ob-
tained when D1(ϕ) and D2(c, ϕ), and the other
data are smooth enough.

The outline of the paper is the following.
The next section is dedicated to fix the nota-
tions, to introduce the basic functional spaces
to be used, to collect some results about inter-
polation inequalities and embeddings, as well
as to explicitly describe our general assump-
tions. Also in this section, we introduce the
time-discretization scheme to be used and state
the main results of the paper. In Section 3 con-
tains the proof of the existence of the discrete
solution, that is, solutions of the corresponding
discretized scheme, as well as certain results on
their regularity. In Section 4 we establish a dis-
crete maximum principle for the semi discrete
problem related to the phase field equation.
This result is important to obtain the a priori
estimates of semi discrete scheme and it is only
proved for the case of two-dimensional.. Exis-
tence of a weak solution is proved in Section 5
by using a collection of estimates, uniform with
respect to the time-discretization step. In Sec-
tion 6 presents further regularity and unique-
ness of the solutions.

Finally, we remark that, as usual in this kind
of context, throughout the article we will de-

note by M , and sometimes M1,M2, . . ., con-
stants depending only on known quantities.

2 Notation, assumptions and
auxiliary results

We denote the Banach space W 2,1
q (Q) con-

sists of functions u(x, t) in Lq(Q) whose gen-
eralized derivatives ∂xu, ∂2

xu, ∂tu are Lq-
integrable; here ∂s

x denotes all the partial deriv-
atives with respect to x1, . . . , xn of order s. Its
norm is given by

||u||(2)
q,Q = ||u||q,Q+||∂xu||q,Q+||∂2

xu||q,Q+||∂tu||q,Q.

We refer to [5, 8], for instance, for more de-
tails of the previous spaces.

We will also need the following Gagliardo-
Nirenberg type interpolation inequalities stated
in the following lemmas (see Zheng [13, p. 3]):

Lemma 2.1 Let Ω ⊂ IRd, d = 1, 2 or 3, is
a bounded domain with a C2-boundary. Then,
there exist a positive constant M such that

||∇u||24,Ω ≤M ||∆u||2,Ω ||u||∞,Ω, (2.1)

∀u ∈ H2
0 (Ω) ∩ L∞(Ω).

In lower dimensions, the following holds:

Lemma 2.2 Let Ω ⊂ IRd, d = 1 or 2 is a
bounded domain with a C2-boundary. Then,
there exist a positive constant M such that

||u||24,Ω ≤M ||u||2,Ω ||∇u||2,Ω, (2.2)

∀u ∈ H1
0 (Ω) ∩ L2(Ω).

||∇u||24,Ω ≤M ||∇u||2,Ω ||∆u||2,Ω, (2.3)

∀u ∈ H2
0 (Ω) ∩H1(Ω).

Throughout this paper we shall make the fol-
lowing assumptions:

(H): Ω ⊂ IR2 is a bounded domain with C2-
boundary;

D1(·) ∈ C0(IR) such that
0 < ρ0 ≤ D1(·) ≤ ρ1, ρ0, ρ1 ∈ IR+;

D2(·, ·) ∈ C0(IR2) such that
|D2(·, ·)| ≤ α0, α0 ∈ IR+.

In this paper we shall frequently make use of
some auxiliary results, which we list below for
further reference.

Frequently we shall use the discrete Gronwall
Lemma:
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Lemma 2.3 Let τ , M , un, vn (for intergers
n ≥ 0) be nonnegative numbers such that

un ≤M + τ

n∑
k=0

vk uk for n ≥ 0.

Suppose that τvk < 1. Then

un ≤M exp

(
τ

n∑
k=0

vk

1− τvk

)
for n ≥ 0.

At various places we shall use the following
relation

2
∫

Ω
a(a− b) dx = ||a||22,Ω−||b||22,Ω + ||a− b||22,Ω.

(2.4)
Our next lemma provides a compactness cri-

terion:

Lemma 2.4 Let X and Y be two (not neces-
sarity reflexive) Banach spaces, such that Y ⊂
X, the injection being compact.

Assume that G is a family of functions in
L1(0, T ;Y ) ∩ Lp(0, T ;X) for some T > 0 and
p > 1, such that

G is bounded in L1(0, T ;Y ) and Lp(0, T ;X);
(2.5)

sup
g∈G

∫ T−a

0
||g(a+ s)− g(s)||pX ds→ 0

as a→ 0, a > 0.
(2.6)

Then the family G is relatively compact in
Lp(0, T ;X).

2.1 Semi discretization

We consider a semi discretization of prob-
lem (P) with respect to the time variable as
follows: we subdivide [0, T ] into N subinter-
vals [tm−1, tm], tm = τ m, τ = T/N , and for
m = 1, 2, · · · , N we consider the following sys-
tem of elliptic problems (PD):

δtϕ
m − ξ2∆ϕm = (ϕm−1 − 1)(1− 2ϕm−1)ϕm

−|∇ϕm| cm−1 a.e. in Ω,
δtc

m − div(D1(ϕm)∇cm) =
div(D2(cm, ϕm)∇ϕm) a.e. in Ω,

ϕm = 0, cm = 0 a.e. in ∂Ω,

where ϕ0 = ϕ0(x), c0 = c0(x), δtϕm = (ϕm −
ϕm−1)/τ , δtcm = (cm − cm−1)/τ and ϕm and
cm, m = 1, ..., N , are expected to be approxi-
mations of ϕ(x, tm) and c(x, tm), respectively.

We will prove the following existence result
for discrete scheme (PD):

Theorem 2.1 There exists an unique solution
(ϕm, cm) in H2(Ω)×H1

0 (Ω) of the approximate
problem (PD).

With this result we may introduce the func-
tions: for t ∈ [tm−1, tm], and 1 ≤ m ≤ N ,
we define ϕ̃τ (t) = ϕm−1 + (t − tm−1)δtϕm,
c̃τ (t) = cm−1 +(t− tm−1)δtcm, and correspond-
ing step functions are given by ϕτ (t) = ϕm and
cτ (t) = cm.

The sequence of functions (ϕ̃τ , c̃τ ) can be ex-
pected to converge as τ → 0, in suitable func-
tion spaces. The limit function (ϕ, c) is ex-
pected to be a solution to the problem (P):

Theorem 2.2 Assume that (H) holds. Sup-
pose (ϕ0, c0) ∈ H1(Ω) ∩ L2(Ω) with 0 ≤
ϕ0(x) ≤ 1 for a.e. x ∈ Ω. Then there exists
functions (ϕ, c) satisfying (ϕ, c) ∈ W 2,1

2 (Q) ×
(L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))) and ct ∈
L2(0, T ;H−1(Ω)), such that (ϕ(0), c(0)) =
(ϕ0, c0) and

〈ct, v〉+
∫

Ω
D1(ϕ)∇c∇v dx =

−
∫

Ω
D2(ϕ, c)∇ϕ∇v dx,

for all v ∈ H1
0 (Ω) a.e. in (0, T ),

ϕt − ξ2∆ϕ = ϕ(ϕ− 1)(1− 2ϕ)− |∇ϕ| c in Q,
ϕ = 0 on S.

When c0, D1 and D2 are smooth enough, we
may have further regularity properties:

Theorem 2.3 Assume that (H) holds. Sup-
pose c0 ∈ H1

0 (Ω), D1(ϕ) and D2(c, ϕ, ) are dif-
ferentiable, with ∇D1 ∈ L∞(IR) and ∇D2 ∈
L∞(IR2). Then there exists an unique solution
(ϕ, c) ∈ (W 2,1

2 (Q))2 of the problem (P).

3 Proof of Theorema 2.1

For a fixed m, assuming that ϕm−1 and cm−1

are already known and we consider the follow-
ing nonlinear system:

−τξ2∆ϕm + ϕm = τ (ϕm−1)(1− 2ϕm−1)ϕm−
τ |∇ϕm| cm−1 + ϕm−1 in Ω,

−τ div(D1(ϕm)∇cm) + cm =
τdiv(D2(cm, ϕm)∇ϕm) + cm−1 in Ω,

ϕm = 0, cm = 0 on ∂Ω.

The proof the Theorem 2.1 will be omitted.
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4 Discrete maximum principle

Next, we establish a discrete maximum prin-
ciple for the semi discrete problem:

δtϕ
m − ξ2∆ϕm = (ϕm−1 − 1)(1− 2ϕm−1)ϕm−

|∇ϕm| cm−1 a.e. in Ω, (4.7)

ϕm = 0 a.e. on ∂Ω.

where ϕ0 = ϕ0(x) such that 0 ≤ ϕ0(x) ≤ 1 and
δtϕ

m = (ϕm − ϕm−1)/τ .

Now, we multiplying the equation (4.7) by
2τϕm

− , integrating over Ω and using Green’s for-
mula, we obtain

2
∫

Ω
(ϕm −ϕm−1)ϕm

− dx+ 2τξ2
∫

Ω
|∇ϕm

− |2 dx =

2τ
∫

Ω
(ϕm−1 − 1)(1− 2ϕm−1)(ϕm

− )2 dx−

2τ
∫

Ω
|∇ϕm

− |cm−1ϕm
− dx.

Moreover, we can write

2
∫

Ω
(ϕm
− − ϕm−1

− )ϕm
− dx+

2
∫

Ω
(ϕm−1
− −ϕm−1)ϕm

− dx+2τξ2
∫

Ω
|∇ϕm

− |2 dx =

2τ
∫

Ω
(ϕm−1 − 1)(1− 2ϕm−1)(ϕm

− )2 dx−

2τ
∫

Ω
|∇ϕm

− |cm−1ϕm
− dx.

Now, using that 2
∫

Ω
(ϕm−1
− −ϕm−1)ϕm

− dx ≥

0, max
s∈IR

(s−1)(1−2s) is finite, and Hölder’s and

Young’s inequalities, we get

2
∫

Ω
(ϕm
− − ϕm−1

− )ϕm
− dx+ 2τξ2||∇ϕm

− ||22,Ω ≤

τM1||ϕm
− ||22,Ω + τ ||∇ϕm

− ||2,Ω||cm−1||4,Ω||ϕm
− ||4,Ω.

Using the relation (2.4) and Young’s inequal-
ity, we obtain

||ϕm
− ||22,Ω − ||ϕm−1

− ||22,Ω + ||ϕm
− − ϕm−1

− ||22,Ω+

τξ2||∇ϕm
− ||22,Ω ≤

τM1||ϕm
− ||22,Ω +

τ

ξ2
||cm−1||24,Ω||ϕm

− ||24,Ω.

Using the result interpolation (2.2) and
Young’s inequality, we have

||ϕm
− ||22,Ω − ||ϕm−1

− ||22,Ω+

||ϕm
− − ϕm−1

− ||22,Ω +
τξ2

2
||∇ϕm

− ||22,Ω ≤

τM1||ϕm
− ||22,Ω +

τ

2ξ6
||cm−1||44,Ω||ϕm

− ||22,Ω.

Summing these relations for m = 1, 2, ..., r,
with 1 ≤ r ≤ N , we find

||ϕr
−||22,Ω +

r∑
m=1

||ϕm
− − ϕm−1

− ||22,Ω+

τξ2

2

r∑
m=1

||∇ϕm
− ||22,Ω ≤

||ϕ0
−||22,Ω+τ

r∑
m=1

(
M1 +

1
2ξ6

||cm−1||44,Ω

)
||ϕm||22,Ω

From discrete Gronwall Lemma 2.3

||ϕr
−||22,Ω ≤

M2||ϕ0
−||22,Ω exp

(
τ

r∑
m=1

1
2ξ6

||cm−1||44,Ω

)
.

Since ϕ0
− = 0, we conclude that ||ϕr

−||22 = 0.
Hence ϕm

− = 0 for all m and a.e. in Ω.

In the same way, ϕ0 ≤ 1 a.e in Ω implies that
ϕm ≤ 1 for all m and a.e. in Ω; it is sufficient
to multiply the equation (4.7) by (1−ϕm)− and
proceed similarity as before.

Then, we proved that

0 ≤ ϕm(x) ≤ 1, ∀m, a.e. inΩ. (4.8)

5 Proof of Theorem 2.2

Lemma 5.1 For τ sufficiently small the fol-
lowing estimates are satisfied:

||(ϕτ , ϕ̃τ )||(L∞(0,T ;H1(Ω)))2 ≤M,

||(ϕτ , ϕ̃τ )||L2(0,T ;H2(Ω)))2 ≤M,

||(cτ , c̃τ )||(L∞(0,T ;L2(Ω)))2 ≤M,

||(cτ , c̃τ )||L2(0,T ;H1(Ω)))2 ≤M,

||∂tϕ̃τ ||2,Q ≤M.

Moreover, ||(ϕ̃τ − ϕτ , c̃τ − cτ )||(L2(Q))2 ≤ τ M .

The proof the Theorem 2.1 will be omitted.
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5.1 Taking the limit

We deduce from Lemma 5.1 that (ϕ̃τ , ϕτ ),
(c̃τ , cτ ) are bounded (uniformly with respect
to τ) in W 2,1

2 (Q) × L2(0, T ;H2(Ω)) and
(L2(0, T ;H1

0 (Ω)))2, respectively. Moreover,
W 2,1

2 (Q) is compactly embedding into Lp(Q)
with 1 ≤ p < ∞ (see [9]). Hence, there ex-
ist (ϕ̃, ϕ) ∈W 2,1

2 (Q)×L2(0, T ;H2(Ω)), (c̃, c) ∈
(L2(0, T ;H1

0 (Ω)))2 and subsequences still de-
note (ϕτ , cτ ), (ϕ̃τ , c̃τ ), such that as τ → 0,

ϕ̃τ ⇀ ϕ̃ in W 2,1
2 (Q),

ϕτ ⇀ ϕ in L2(0, T ;H2(Ω)),
ϕ̃τ → ϕ̃ in Lp(Q),
c̃τ ⇀ c̃ in L2(0, T ;H1

0 (Ω)),
cτ ⇀ c in L2(0, T ;H1

0 (Ω))
c̃τ

∗
⇀ c̃ in L∞(0, T ;L2(Ω)),

cτ
∗
⇀ c in L∞(0, T ;L2(Ω)).

(5.9)

Since (ϕ̃τ − ϕτ , c̃τ − cτ ) converge to 0 in
(L2(Q))2, we conclude that (ϕ, c) = (ϕ̃, c̃).

We infer from (5.9) that ϕτ → ϕ a.e. in Q;
this and 0 ≤ ϕτ (x, t) ≤ 1 imply

0 ≤ ϕ(x, t) ≤ 1 a.e. in Q. (5.10)

Observe that from (5.9) and using the as-
sumption (H), we obtain that

D1(ϕτ ) → D1(ϕ) a.e. in Q.

Now, for each τ and any fixed 2 ≤ p < ∞,
define the functions gτ = |D1(ϕτ ) − D1(ϕ)|p.
By using again (H) and the previously proved
almost everywhere convergences, we obtain
|gτ | ≤ 2p ρp

1 and gτ → 0 a.e. Then, by
the Lebesgue’s dominated convergence theo-
rem, we conclude that

D1(ϕτ ) → D1(ϕ) strongly in Lp(Q), (5.11)

for any 2 ≤ p <∞.
Next, we need the estimate of fractional in

time of c̃τ to apply the compactness result given
in Lemma 2.4.

We set Y = H1
0 (Ω) and X = L2(Ω); the

embedding of H1
0 (Ω) in L2(Ω) is compact by

Rellich’s theorem; we choose p = 2 and G is
the family of functions c̃τ .

Now, using function (ϕ̃τ , c̃τ ), and corre-
sponding step function (ϕτ , cτ ) we rewrite
(PD) in the form

∂ϕ̃τ

∂t
− ξ2∆ϕτ = (ϕτ − 1)(1− 2ϕτ )ϕτ−

|∇ϕτ |cτ ,

d

dt

(∫
Ω
c̃τ (t) v dx

)
+
∫

Ω
D1(ϕτ (t))∇cτ (t)∇v dx =

−
∫

Ω
D2(ϕτ (t), cτ (t))∇ϕτ (t)v dx,

(5.12)
for all v ∈ H1

0 (Ω).
We then know from Lemma 5.1 the c̃τ is

bounded in L2(0, T ;H1
0 (Ω)). There remains to

show (2.6). For this, we integrate (5.12) be-
tween t and t+ a, t ∈ (0, T ), a > 0:∫

Ω
(c̃τ (t+ a)− c̃τ (t))v dx =

−
∫ t+a

t

∫
Ω
D1(ϕτ (s))∇cτ (s)∇v dx ds

−
∫ t+a

t

∫
Ω
D2(ϕτ (s), cτ (s))∇ϕτ (s)∇v dx ds.

We choose v = c̃τ (t+a)− c̃τ (t), and integrate
these relations between 0 and T − a. We find∫ T−a

0
||c̃τ (t+ a)− c̃τ (t)||22,Ω = I1 + I2, (5.13)

where

I1 = −
∫ T−a

0

∫ t−a

t

∫
Ω
D1(ϕτ (s))J1 dx ds dt,

I2 = −
∫ T−a

0

∫ t+a

t

∫
Ω
D2(ϕτ (s), cτ (s))J2 dx ds dt,

with J1 = ∇cτ (s)(∇c̃τ (t + a) − ∇c̃τ (t)) and
J2 = ∇ϕτ (s)(∇c̃τ (t+ a)−∇c̃τ (t)).

Using the assumptions (H), Fubini’s theo-
rem and Schwarz inequality, we get

|I1| ≤ ρ1T
1/2a1/2

(∫ T

0
||∇cτ (s)||22,Ωds

)1/2

(∫ T−a

0
||∇c̃τ (t+ a)−∇c̃τ (t)||22,Ωdt

)1/2

,

|I2| ≤ ρ2T
1/2a1/2

(∫ T

0
||∇ϕτ (s)||22,Ωds

)1/2

(∫ T−a

0
||∇c̃τ (t+ a)−∇c̃τ (t)||22,Ωdt

)1/2

.

From Lemma 5.1, we obtain

|I1| ≤M a1/2, |I2| ≤M a1/2. (5.14)

Combining (5.14) and (5.13), we obtain
(2.6). Hence there exist subsequences still de-
note cτ , such that as τ → 0,

cτ → c in L2(Q). (5.15)
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Applying arguments that are similar to the
ones used to obtain the estimate (5.11), we can
show the following convergence:

D2(ϕτ , cτ ) → D2(ϕ, c) strongly in Lp(Q),

with 2 ≤ p <∞.

On the other hand, for any ψ ∈ L2(Q), we
have that∫

Q
((3ϕ2

τ−2ϕ3
τ−ϕτ )−(3ϕ2−2ϕ3−ϕ))ψ dx dt =

∫
Q
dτ (ϕτ − ϕ)ψ dx dt,

where dτ = 3(ϕτ +ϕ)− 2(ϕ2
τ +ϕτ ϕ+ϕ2)− 1.

We observe that by using the fact that 0 ≤
ϕτ ≤ 1 and 0 ≤ ϕ ≤ 1 we obtain ||dτ ||∞,Q ≤

M . Consequently,
∫

Q
dτ (ϕτ − ϕ)ψ dx dt ≤

||d||∞,Q ||ϕτ −ϕ||2,Q||ψ||2,Q, and from (5.9), we
conclude that

ϕτ (ϕτ−1)(1−2ϕτ ) ⇀ ϕ(ϕ−1)(1−2ϕ) in L2(Q).

Moreover, from (5.9) and (5.15), we conclude
that

|∇ϕτ | cτ ⇀ |∇ϕ| c in L2(Q).

With the previous convergence results, with
standard arguments, it is easy to take the limit
in the approximate problem (PD) and prove
that ϕ and c is the required solution.

This completes the proof of Theorem 2.2.

6 Proof of Theorem 2.3

To examine the regularity of (ϕ, c), we as-
sume that D1(s) ∈ C1(IR) and D2(s, y) ∈
C1(IR2) such that

|∂sD1| ≤ ρ2, |∂sD2| ≤ α1, |∂yD2| ≤ α2,
(6.16)

where ρ2, α1, α2 ∈ IR+.
Now, we multiplying the second equation in

(PD) by −2τ∆cm, integrating over Ω and us-
ing Green’s formula, we obtain

2
∫

Ω
(∇cm −∇cm−1)∇cm dx+

2τ
∫

Ω
D1(ϕm)|∆cm|2 dx =

2τ
∫

Ω
∂ϕD1(ϕm)∇ϕm∇cm∆cm dx−

2τ
∫

Ω
∂ϕD2(cm, ϕm)|∇ϕm|2∆cm dx−

2τ
∫

Ω
∂cD2(cm, ϕm)∇ϕm∇cm∆cm dx−

−2τ
∫

Ω
D2(cm, ϕm)∆ϕm∆cm dx. (6.17)

Using the assumptions (H) and (6.16), the
estimate (2.4), Hölder’s and Young’s inequali-
ties, we obtain

||∇cm||22,Ω − ||∇cm−1||22,Ω+

||∇cm −∇cm−1||22,Ω +
τρ0

8
||∆cm||22,Ω ≤

τM1||∇ϕm||24,Ω||∇cm||24,Ω+
τM2||∇ϕm||44,Ω + τM3||∆ϕm||22,Ω.

From the interpolation result (2.1) and (4.8),
we obtain

||∇ϕm||24,Ω ≤M ||∆ϕm||2,Ω, (6.18)

and consequently, we have

||∇cm||22,Ω − ||∇cm−1||22,Ω+

||∇cm −∇cm−1||22,Ω +
τρ0

8
||∆cm||22,Ω ≤

τM4||∆ϕm||2,Ω||∇cm||2,Ω||∆cm||2,Ω+
τM5||∆ϕm||22,Ω.

Applying Young’s inequalitly, we get

||∇cm||22,Ω − ||∇cm−1||22,Ω+

||∇cm −∇cm−1||22,Ω +
τρ0

16
||∆cm||22,Ω ≤

τM6||∆ϕm||22,Ω||∇cm||22,Ω+
τM5||∆ϕm||22,Ω.

Summing these relations for m = 1, 2, ..., r,
with 1 ≤ r ≤ N , we find

||∇cr||22,Ω +
r∑

m=1

||∇cm −∇cm−1||22,Ω+

τ

r∑
m=1

||∆cm||22,Ω ≤M7

(
||∇c0||22,Ω+

τ
N∑

m=1

||∆ϕm||22,Ω||∇cm||22,Ω + τ
N∑

m=1

||∆ϕm||22,Ω

)
.

From Lemma 5.1 and discrete Gronwall
Lemma 2.3, we obtain

max
1≤r≤N

||∇cr||2,Ω + τ

r∑
m=1

||∆cm||22,Ω+

r∑
m=1

||∇cm −∇cm−1||22,Ω ≤
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M8

(
1 + ||ϕ0||2H1(Ω) + ||c0||2H1(Ω)

)
. (6.19)

Now, we multiplying the concentration equa-
tion in (PD) by δtc

m, integrating over Ω and
using Green’s formula, we obtain

||δtcm||22,Ω =
∫

Ω
∂ϕD1(ϕm)∇ϕm∇cmδtcm dx+∫

Ω
D1(ϕm)∆cmδtcm dx−∫

Ω
∂ϕD2(cm, ϕm)|∇ϕm|2δtcm dx−∫

Ω
∂cD2(cm, ϕm)∇ϕm∇cmδtcm dx−∫

Ω
D2(cm, ϕm)∆ϕmδtc

m dx.

Using the assumptions (H) and (6.16),
Hölder’s and Young’s inequalities, we obtain

||δtcm||22,Ω ≤M9

(
||∇ϕm||24,Ω||∇cm||24,Ω+

||∇ϕm||44,Ω + ||∆ϕm||22,Ω + ||∆cm||22,Ω

)
.

From (2.3) and (6.18), we get

||δtcm||22,Ω ≤

M10

(
||∆ϕm||2,Ω||∇cm||2,Ω||∆cm||2,Ω+

||∆ϕm||22,Ω + ||∆cm||22,Ω

)
.

Applying Young’s inequality, we have

τ ||δtcm||22,Ω ≤

τM11

(
||∆ϕm||22,Ω||∇cm||22,Ω+

||∆ϕm||22,Ω + ||∆cm||22,Ω

)
.

Summing these relations for m = 1, 2, ..., N ,
we find

τ

N∑
m=1

||δtcm||22,Ω ≤M11

(
max

1≤m≤N
||∇cm||22,Ω(

τ

N∑
m=1

||∆ϕm||22,Ω

)
+

τ
N∑

m=1

||∆ϕm||22,Ω + τ
N∑

m=1

||∆cm||22,Ω

)
.

From Lemma 5.1 and (6.19), we obtain

τ
N∑

m=1

||δtcm||22,Ω ≤M12

(
||ϕ0||2H1(Ω)+||c0||

2
H1(Ω)

)
,

where the constant M12 depends on T , ξ2, ξ4,
ρl, αl, |Ω|, ||ϕ0||2,Ω and ||c0||2,Ω with l = 1, 2.

This completes the proof of Theorem 2.3.
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