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Abstract: This paper addresses applications of group and graph theories tools to simplify the
analysis of kinematic chains associated with mechanisms and parallel robots. For the purpose of
this analysis, a kinematic chain is described by its properties, i.e. degrees-of-control matriz, con-
nectivity matrixz and redundancy matriz. Kinematic chains are represented by graphs and thus,
the symmetry of a kinematic chain is the same as the symmetry of its graph. The symmetry
group of the graph is associated with the graph symmetry. By using the group structure induced
by the symmetry we prove that degrees-of-control, connectivity and redundancy are invariants by
the action of the automorphism group of the graph.

Keywords: kinematic chains, mechanisms, parallel robots, graph symmetry, automorphism
group, actions, orbits.

1 Introduction

Mathematical models are commonly difficult to handle in a general setting. Symmetry in math-
ematical models is useful to simplify the understanding of a model and to determine the patterns
for which the model is appropriate. Thus, it is a common strategy to study cases of symmetry
in order to learn more about a model. In our setting, the mathematical model associates a kine-
matic chain with a graph. Belfiore and Di Benedetto [1], Liberati and Belfiore [9] and Martins
and Carboni [10] discuss how the topological structure of a kinematic chain of a parallel ma-
nipulator can be described quite extensively by degrees-of-control, connectivity and redundancy
matrices. These matrices are square symmetric with dimension n X n, where n is the number
of links of the kinematic chain. Our aim is to apply group and graph theories to reduce the
size of the degrees-of-control matrix, connectivity matrix and redundancy matrix of a kinematic
chain. In this context, the graph symmetry plays an important role because it provides a group
structure.

In order to achieve our aims, we investigate symmetries and invariants by the action of the
automorphism group of the graph representing kinematic chains and parallel robots. Symmetries
of graphs are related to automorphisms [2, 13]. By exploring these symmetries it is possible to
reduce the matricial representation of properties important to the kinematic analysis of kinematic
chains. It is shown that the matrix size is reduced from n X n to o X n, where n is the number
of links and o is the number of orbits by the action of the automorphism group of the graph.
Higher graph symmetry means a smaller number of orbits o, as will be clearly shown through
examples. The main result of this study was to prove that the connectivity matrix is invariant
by the action of the automorphism group of the graph, the invariance is the main tool used to
reduce the size of the matrices.
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Group theory has been used by some authors in the context of analyzing kinematic chains
of mechanisms and parallel robots. Tsai [19] uses the symmetry group of a kinematic chain to
identify when two kinematic chains are identical (isomorphism problem). Simoni et al. [16, 15]
have applied group theory tools in the enumeration of kinematic chains, mechanisms and parallel
robots.

2 Graphs and Symmetry

A graph X = (V, E) consists of a finite set V = V(X)) of vertices and a family F = E(X) of
subsets of V' of size two called edges. Usually, the pair {x,y} denotes an edge, and the number
of edges incident to a vertex v is the degree of the vertex v (deg(v)). A subgraph of a graph
X is a graph Y such that V(Y) C V(X), E(Y) C E(X). The distance between two vertices x
and y, denoted by d(z,y), is the length of the shortest path between x and y. It is important to
note that a kinematic chains of mechanisms and parallel robots can be uniquely represented by
a graph whose vertices correspond to the links of the chain and whose edges correspond to the
joints of the chain [19, 12]. Figure 1 shows this correspondence, Figure 1(a) shows the classical
Stephenson kinematic chain with labeled links and Figure 1(b) shows the corresponding graph.
From now on, the term graph will be used to mean a kinematic chain, unless otherwise stated.

3 4
6
2 1
(a) Stephenson kinematic chain. (b) Stephenson graph.

Figure 1: Biunivocal correspondence between graphs and kinematic chains.

2.1 Isomorphisms and Automorphisms

Given a graph X, a bijective map o : V(X) — V(X) defines a permutation of the elements of
V(X). Assuming V(X) has n elements, the set of permutations endowed with the operation of
composition is the group .5,.

Definition 1 (Isomorphisms and automorphisms of graphs) Two graphs X and Y are
isomorphic if there is a bijection o : V(X) — V(YY) such that {z,y} € E(X) & {o(z),0(y)} €
E(Y). If isomorphism exists between two graphs, then the graphs are called isomorphic and
we write X ~ H. The automorphism of a graph is the graph’s isomorphism with itself. The
automorphism group of a graph X is denoted by Aut(X).

Herein, we use some results for invariants of isomorphism and automorphism groups of graphs
found in the literature [4, 17]. These results are important to prove Theorems 9 and 10 in Section
4 and are summarized below:

Remark 1 Let X be a graph, Y a subgraph of X and o an element of Aut(X).
1 - Degree invariance: deg(o(x)) = deg(x), for all x € V(X);
2 - Distance invariance: 6(o(x),0(y)) = 0(x,y), for all x,y € V(X);
3 - Subgraph invariance: o(Y) ~ Y, i.e. they are isomorphic.

Proofs of these invariant remarks are found in [4, 17].
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2.2 Orbits

The orbit of a graph vertex corresponds to the subset of vertices for which the vertex is moved
by the action of the automorphism group of the graph. Let us consider an example.

Example 1 Let X be the Stephenson graph shown in Figure 1(b) (pg. 2). In this case, Aut(X) =
{o1,09,03,04}, where o1 = (1)(2)(3)(4)(5)(6), o2 = (1)(2)(3)(4)(56), o3 = (14)(23)(5)(6) and
o4 = (14)(23)(56). The generator set is Aut(X) =< o2, o3 >. The action of the automorphism
group in the Stephenson graph is shown in Figures 2(a), 2(b), 2(c) and 2(d).

< [ [ [

a 0'1 0'2 C 0’3 0'4
Figure 2: Action of the automorphism group in the Stephenson graph.

The orbits are:

O = {{1,4},{2,3},{5,6}} = {Or11, 011,01}

where Orrr = {1,4}, Orr = {2,3} and Or = {5,6}. The Stephenson graph has three different
orbits resulting in classical Stephenson I (Or), II (Opr) and III (Orrr) mechanisms fizing a
representative link of each orbit (for more details consult [16, 15]).

2.3 Symmetry in kinematic chains

Since our aim is to apply symmetry to simplify the kinematic chain analysis, and kinematic
chains are represented in biunivocal correspondence by graphs, it is necessary to define what is
meant by graph symmetry.

The symmetry of a graph corresponds to an element of the automorphism group of the graph.
According to Erdés and Rényi [2], a graph is considered to be symmetric when it has more than
one automorphism, i.e. the automorphism group has a degree greater than 1. In the definition
below we extend the concept of graph symmetry to kinematic chains.

Definition 2 (Symmetry of a kinematic chain) The symmetry of a kinematic chain is the
symmetry of its corresponding graph. A kinematic chain is symmetric when it has more than
one automorphism.

3 Properties of Kinematic Chains

In this section, some fundamental properties of kinematic chains are introduced. These are
essential for topological analysis and number synthesis of mechanisms and parallel robots.

Definition 3 (Mobility) The number of degrees of freedom, or mobility (M ), of a kinematic
chain is the number of independent parameters required to completely specify the configuration
of the kinematic chain in space, with respect to one link chosen as the reference.

The mobility of a kinematic chain, with n links and g single degree of freedom joints, may
be calculated by the general mobility criterion [12, 6] applied to a set of n links and ¢ single

degree of freedom joints:
M=An-g—1)+g (1)

where A is the order of the screw system to which all the joint screws belong.
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Using the graph representation of a kinematic chain (see Fig. 1, pg. 2), the general mobility

criterion is given by

M =X(V|-I|E|-1) +|E]| (2)
where |V| is the number of graph vertices (i.e. links) and |E| is the number of graph edges
(i.e. joints)[19, 12].

The connectivity C;; between two links 7 and j of a kinematic chain is the relative mobility
between links i and j [6]. Different algorithms for connectivity calculations have been proposed
by Shoham and Roth [14], Belfiore and Di Benedetto [1], Liberati and Belfiore [9] and Martins
and Carboni [10].

Definition 4 (Connectivity [10]) In a kinematic chain represented by a graph X, the con-
nectivity between two links © and j is

Cz(X) = min{D[iajLMrlnin’)‘} (3)

where Dli,j] is the distance between vertices i and j of X, M;nm is the minimum mobility of

any closed-loop biconnected subgraph of X containing vertices i and j, and X\ is the order of the
screw system.

Definition 5 (Degrees-of-control [10]) In a kinematic chain represented by a graph X, the
degrees-of-control between two links i and j is

Based on the definition of degrees-of-control and connectivity, the definition of redundancy
can be introduced.

Definition 6 (Redundancy [1]) In a kinematic chain represented by a graph X, the redun-
dancy between two links i and j is the difference between K;;(X) and C;i;(X)

R;j(X) = K;j(X) — Ci(X) (5)
The importance of the connectivity, degrees-of-control and redundancy is emphasized by

several authors [1, 6, 18].

Example 2 Let’s consider the planar kinematic chain X shown in Fig. 8 where the mobility is
M = 3.The adjacency matriz A(X) is given by Equation 6 and the connectivity C(X) is given
by Equation 7.

2 9
(a) Kinematic chain. (b) Graph.

Figure 3: Kinematic chain X and graph representation.

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910
1 ro 60 1. 01 0 0 0 0 17 1 ro 2 1 2 1 2 3 2 3 17
2 0 0 00 0O O OO0OT1I1 2 2 0 3 2 3 3 3 2 11
3 1 0 0 00 0 0 1 0O 3 1 3 0 3 2 3 2 1 2 2
4 00 0 0 0 0 1 0 01 4 22 3 03 2 1 2 31
5 10 0001 0 0 0O 5 13 2 3 01 2 3 3 2

AX) = 6 00 0 0 1 01 0 00 © cx)= 6 23 3 2101 2 3 3 (7

7 00 01 01 01 00 7 33 21 2 101 2 2
8 0 01 00 0O 1O0T1PO0 8 2 21 2 3 2 1 013
9 01 0 0 O0OOO0OT1TTO0TD0O0 9 3 1 2 3 3 3 2 1 0 2
LI 101 0O0O0O0O0O0d L1 121 2 3 2 3 2 04
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In this case, the degrees-of-control matriz K(X) is equal to the connectivity matriz C(X),
K(X) =C(X), and the redundancy matriz is null, R(X) = 0.

4 Theorems and Applications

This section considers the applications of the group and graph theories to analysis of kinematic
chains. First, we prove the invariance of degrees-of-control, connectivity and redundancy of
kinematic chains by the action of its automorphism group of the graph.

Lemma 7 (Mobility invariance) The mobility M of a graph (kinematic chain) is invariant
by the action of the automorphism group of the graph.

Proof: The proof follows from Definition 1. An automorphism of a graph is an isomorphism with
itself and thus, the graph structure is preserved. As we can see in Example 1, the automorphism
group of the graph results in the relabeling of the graph vertices and consequently the number
of vertices |V|, the number of edges |E| and the order of the screw system A remain the same.
Consequently, the mobility, Equation 2, is invariant.

Lemma 8 (Subgraph mobility invariance) The mobility M of a subgraph (subchain) is in-
variant by the action of the automorphism group of the graph.

Proof: The proof follows from Remark 1 and Lemma 7. Remark 1 proves that a subgraph is
invariant by the action of its automorphism group and thus, the structure of the subgraph (|V|,
|E|, A) remains the same. Lemma 7 proves that the mobility is invariant. Consequently, the
subgraph mobility is invariant.

Theorem 9 (Degrees-of-control invariance) Let X be a graph (kinematic chain) and Aut(X)
its automorphism group. The degrees-of-control matriz K (X) of the kinematic chain is invariant
by the action of the automorphism group of the graph.

Proof: The degrees-of-control is given by K;; = min{D[i, j] mm} see Equation 4. To prove
this theorem, it is necessary to show that D matrix and Mmln are invariant by the action of the
automorphism group. According to Remark 1 the distance of any pair of vertices is invariant
by the action of the automorphism group of the graph, i.e. D[i,j] = D[o(i),0(j)]. Therefore,
the D matrix is invariant by the action of the automorphism group of the graph. According
to Remark 1 any subgraph is invariant by the action of the automorphism group of the graph,
therefore, MI/nin is also invariant.

Theorem 10 (Connectivity invariance) Let X be a graph (kinematic chain) and Aut(X)
its automorphism group. The connectivity matriz C(X) of the kinematic chain is invariant by
the action of the automorphism group of the graph.

Proof: The proof follows from Theorem 9. The connectivity is given by C;; = min{K;;, A}, see
Equation 3. Kj; is invariant according to Theorem 9 and X is a property of the kinematic chain
(it is not dependent on the graph) and therefore it is constant.

Corollary 11 (Redundancy invariance) Let X be a graph (kinematic chain) and Aut(X)
its automorphism group. The redundancy matriz R(X) of the kinematic chain is invariant by
the action of the automorphism group of the graph.

Proof: The proof follows straightforwardly from Theorems 9 and 10. The redundancy is given
by R;j(X) = Kij(X) — Cj(X) (see Equation 6). K;;(X) and C;;(X) are invariants according

to Theorems 9 and 10, consequently, R;;(X) is invariant.
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Theorems 9 and 10 and Corollary 11 state that the connectivity, degrees-of-control and
redundancy are symmetric properties of a kinematic chain, ¢.e. elements which are symmetric
by the action of the automorphism group of the graph have the same properties. Considering
that symmetric links are identified by the orbits of the automorphism group of the graph, it is
possible to reduce the matricial representation considering one representative element of each
orbit.

4.1 Application to Planar Parallel Mechanisms

Let X be the kinematic chain of the planar parallel mechanism shown in Fig. 3. In this case,
Aut(X) = {01,02,03,04}, where o1 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10),
oo = (17)(29)(34)(56)(810), o3 = (1 8)(26)(59)(7 10) and o4 = (1 10)(2 5)(3 4)(6 9)(7 8)
The generator set is Aut(X) =< o9, o3 >. The automorphism group of the graph can be
obtained with the nauty [11]. The nauty (No AUTomorphisms, Yes?) is a set of very efficient C
language procedures for determining the automorphism group of a graph with colored vertices.
It provides this information in the form of a set of generators, the size of the group, and the
orbits of the group.

The orbits are:

O ={{17810};{25609};{3 4}} = {01, 0,05}

where O = {17810}, O2 = {2569} and O3 = {3 4}. The matrices presented in Equa-
tions 6 and 7 are reduced to matrices presented in Equation 8 and 9. In this representation we
chose as representative elements of each orbit the elements (links) 1, 2 and 3.

1 2345678 910 1 2345678 910
o0 oo010100001 o, [o21 2123231
A(X)= 02 |0 0 0000 O0O0 11 (8) C(X)= 02 |2 03 2333211 (9)
O3 |1 000000100 O3 |1 303 232122

Note that the matrices are reduced from 10 x 10 to 3 x 10. Note also that the matrix rep-
resentations A,(X) and C,(X) are more compact than the original A(X) and C(X). The more
symmetric the kinematic chain the smaller is its representation. As most parallel mechanisms
found in the literature are symmetric, this representation is particularly advantageous.

5 Conclusions

The main contribution of this paper is to prove the invariance of connectivity, degrees-of-control
and redundancy by the action of the automorphism group of the graph. The connectivity,
degrees-of-control and redundancy are symmetric properties of a kinematic chain, i.e. links which
are symmetric by the action of the automorphism group of the graph have the same properties.
Considering that symmetric links are identified by the orbits of the automorphism group of the
graph, we reduce the matricial representation considering one representative element of each
orbit. Thus, the order of the matrices are reduced from n x n to o X n where n is the number
of links of the kinematic chain and o is the number of orbits of the automorphism group of the
graph.

Considering that the majority of parallel robots in the literature have symmetric kinematic
chains [3, 7, 8, 5] the reduced representation offers considerable advantages. As shown in the
examples, if a kinematic chain has symmetry it is possible to obtain a gain in terms of the
storage of matrices, and in the simplicity of the kinematic analysis. These techniques can also
be applied to kinematic chains of serial and hybrid robots. The only cases for which the theory
presented herein is not advantageous is when the graph is fully asymmetric, ¢.e. in rare practical
cases.
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